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Motivation

@ Connection between "lattice world" and "real world":
renormalization constants Z

@ Must know them as accurate as possible
@ Nonperturbative approach: widely used scheme is RI' — MOM

Z5'(0) = Z;'(0) 151t (To() o o(P)
tr(—i 2, 7 sin(ap,)aS ™ (p))
123", sin?(ap,)
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Motivation

@ Simulations with dynamical fermions: vertex function I'n(p) can
contain disconnected contributions

@ Three-point functions and disconnected contributions: technically
very demanding

@ Alternative approach: Feynman-Hellmann (FH) method which
needs two-point functions only - at the expense of modified actions

@ We present first results for the local operators O = Az, S

@ Setting: 323 x 64 lattice, 5 = 5.5, N; = 3, a = 0.074(2) fm, 8
momentum tuples, 9 configurations/tuple

@ Axial vector operator: x = 0.12090
@ Scalar operator: x = 0.12099, 0.12095, 0.12092
@ Action: SLINC fermions with tree-level improved Symanzik gluons
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@ Modified action (ky = kg = ks = Fsea)

Smod()\sea) = + Z wq Hsea q — Asea Z Eq O ¢q
q
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FH method |

@ Modified action (ky = kg = ks = Fsea)

Smod()\sea = + Z wq Hsea q — Asea Z Eq @ ¢q
q

@ Modified propagator S;lmd from the fermion matrix (after integration
over the fermion fields)
S,r‘ijd()\seaa )\val) =

f DU(M(Hval) — Aval 0)11_1 det(M(Klsea) — Asea O)Nf exp [_SG(U)]
f DU det (M(/isea) - )\sea O)Nf exp [_SG(U)]

= <(M - Avalo)i]f1>>\sm
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FH method I

@ Expanding to first order in both \'s (kya = Ksea)

S;'/I'md()‘seaa Aval) = <(M),71> + Aval <(M_1 O M )ij>*
Nidsea { (M) THOM ) = (M) ) (THOM "]} } + O(22)
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FH method I

@ Expanding to first order in both \'s (kya = Ksea)

S;'/T'md()‘sem Ava) = <(M)/j1> + Aval <(M71 0 M71)ij>_
Nidea { (M) TOMT]) = (M) )(TOM ™))} + O(N?)
@ Expectation values (...) are taken for Ay = 0
tr(OM™) A
| e
i m/"v . |
NS

m-1

Figure: Fermion-line connected (left) and disconnected (right) contributions.
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FH method I

@ Expanding to first order in both \'s (kya = Ksea)

S;'/I'md()‘seaa Aval) = <(M),71> + Aval <(M_1 O M )ij>*
Nidsea { (M) THOM ) = (M) ) (THOM "]} } + O(22)

@ Expectation values (... ) are taken for Aeea =0
° af — connected contributions

o ;2 — disconnected contributions
o Obtain three-point function (e.g., singlet case)

0 mod —1 —1 _ conn.-+disc.
S5 S™ON)| = (MTTOMT) 4 Ne{. ) = G
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FH method I

@ Expanding to first order in both \'s (kya = Ksea)

S;'_;md()\seaa )\val) = <(M),71> + /\val <(M_1 @) M_1),'j>—

Nidea { (M) THOM™']) = ((M); ) (TOM ™) | + O(3?)
@ Expectation values (... ) are taken for Aeea =0
) af — connected contributions

o ;2 — disconnected contributions
o Obtain three-point function (e.g., singlet case)

0 mod —1 —1 _ conn.-+disc.
S5 S™ON)| = (MTTOMT) 4 Ne{. ) = G

@ Amputated vertex Green function with unmodified propagator
So = S™4(0,0)
fo=5,"Go S;"
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FH method Ill

@ Need for a sufficient good numerical approximation of a% Smod o

@ At least two values of parameter A, detailed investigations in
[CSSM/QCDSF/UKQCD-collaboration, arXiv:1405.3019, 2014, cf. also
talk of J. Zanotti]

@ With a reasonable choice of the A values we compute
Go(p) ~ 55 [S™(Neip) = S™(A:p)] . AN =Aa =

@ The Z factor computed is in the RI' — MOM scheme —
transformation to RGI and MS
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Axial vector As

@ Amputated Born Green function: I'gom, 4, = 17573
@ Values for A:
non-singlet case: Aya = (0,0.0125), A\(ea = 0
singlet case: A\ya = Asea = (0.00625,0.0125)

1

0.95 £

0.9 .

Za
.

(ap)?

Figure: The non-singlet (NS) and singlet (S) renormalization factors Z,. Fit
range for RGI: (2 < (ap)? < 10)
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Check: derivative

@ Realiability of the numerical approximation of 8 Gmed A 0

@ For the singlet case we have the additional point Ay = Aea = 0
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Check: derivative

@ Realiability of the numerical approximation of % Sm"d‘ko

@ For the singlet case we have the additional point A = Asea = 0

o If 1/12tr(Sy ' S™ (N, Aii p) Sy 'Tgar) (i = 1,2,3) on a straight line
(negligible O()\?))

0.008
g |
TR
L0006 b (ap)® = 3.855 //
o3
< e
% 0004t
% e
= 0002} o
5
- 0 /-/

0 0.00625 0.0125

A

Figure: 1/12tr(S; ' S™(\i, Ai; p) Sy T e for three different A values
together with a linear fit at (ap)? = 3.855.
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Check: non-singlet

@ Non-singlet case: comparison with standard three-point approach
@ Comparison with new results of [Cyprus/CSSM/QCDSF/UKQCD,

115 o .
VZ.A\.lI'II —
1.1k ZNS point 0
1.05 ¢
N 1
0.95 -
0.9 ®
9 e -
Q ®©©°
0.85 & g0 goo 800 BO°
0 2 1l 6 8 10

(ap)?

Figure: Comparison of the non-singlet Z factors calculated with the FH

method (Z3%;;) and via the three-point function (Z35_;..)-
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RGI

@ In order to transform to RGI use intermediate scheme (MOM)

@ vya(non — singlet) = 0,~va(singlet) # 0 — momentum
dependence for singlet case

@ After performing the transformation the remaining (ap)?
dependence is parametrized as

2
2851 = 2590 1 cy(ap)? + 2 ((ap)?)

@ Fitrange: 2 < (ap)® < 10
@ Results:
ZRS = 0.847(2)
Z32 7P — 0.849(8) [Cyprus/CSSM/QCDSF/UKQCD, 2014]

ZRG! = 0.861(9)
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Axial vector operator Az

MS

@ In order to transform to MS:

ZNS = ZRO/ A ZNS
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Axial vector operator Az

MS

@ In order to transform to MS:

ZNS = ZRO/ A ZNS

@ Results:
ZX}EIS = ZE%IS = 0.847(2)
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MS
@ In order to transform to MS:

ZNS = ZRO/ A ZNS

@ Results:
ZA Ns = Z/‘f%s =0.847(2)

081 |
22 ost
N

0 2 4 6 8 10

Figure: The renormalization factor ZM as function of (ap)?
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Axial vector operator Az

MS

@ In order to transform to MS:

ZNS = ZRO A ZNS

@ Results:
ZA Ns = Z/‘f%s =0.847(2)

o ZMS = 0.802(8) at p? = 4 GeV?
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Ratio NS/S
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Figure: The ratio Z@S Z@.
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Ratio NS/S
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N
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M IR IR
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Figure: The ratio Z@S/Z/@.

The ratio is close to 1 - supported by LPT: the difference between the
non-singlet and singlet Z factors starts at two-loop only and is very
small [cf. talk of H. Panagopoulos]
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Scalar operator S

@ Scalar operator coupling A 11 < my v
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Scalar operator S
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Scalar operator S

@ Scalar operator coupling A 11 < my v

@ Mass term serves as coupling term of the scalar operator
@ Partially quenched quarks — non-singlet case
°
o
o

Unitary quarks — singlet case

0 0 0
o 7 am(< 5e)

We use the x values (0.12099,0.12095,0.12092)
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Scalar operator S

Scalar operator coupling A 11 < ma 1)
Mass term serves as coupling term of the scalar operator
Partially quenched quarks — non-singlet case

°
°

°

@ Unitary quarks — singlet case

® 55 = (< 5

@ We use the x values (0.12099, 0.12095, 0.12092)

Figure: The non-singlet and singlet renormalization factors Zs in the
momentum range of interest.
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Scalar operator S

@ Non-singlet case checked with three point function approach
[Cyprus/CSSM/QCDSF/UKQCD, 2014]
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Scalar operator S

@ Non-singlet case checked with three point function approach
[Cyprus/CSSM/QCDSF/UKQCD, 2014]
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Figure: Comparison of the non-singlet Zs computed with the
Feynman-Hellman method and from the three-point function.
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RGI and MS results

@ RGl results:
Zggls = 0.549(5)

Z&g TP = 0.552(4) [Cyprus/CSSM/QCDSF/UKQCD, 2014]

ZRS' = 0.246(19)
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RGI and MS results

@ RGil results:
ZRSL = 0.549(5)
Zgng' "M = 0.552(4) [Cyprus/CSSM/QCDSF/UKQCD, 2014]
ZR3' = 0.246(19)

@ MS results at p? = 4 GeV?:
ZM3s = 0.740(7)
Z\5 P = 0.736(53) [Cyprus/CSSM/QCDSF/UKQCD, 2014]
Z)$ = 0.332(26)
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Scalar operator S

Ratio NS/S
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Figure: Non-singlet and singlet renormalization factors for the scalar operator

in the MS scheme.
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Ratio NS/S
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Figure: Non-singlet and singlet renormalization factors for the scalar operator
in the MS scheme.

The ratio is 2.23(18) for RGl and MS
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Summary

@ Presented Feynman-Hellman method for nonperturbative
calculation of renormalization factors

@ FH makes use of two-point functions — better signals
@ Additional action are needed

@ Straightforward inclusion of disconnected contributions — singlet
operators

@ First results for axial vector and scalar operators
@ Even with very few configurations encouraging results

@ Future steps: improved operators, improved statistics, additional
operators
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